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Abstract. An overview on the theareuc formalism and up to dare applications in quantum 
condensed muter physics of the effective potential and effective Hamiltonian methods is given. 
The main steps of their unified derivation by the so-calledpure qumfum self-conristenl harmonic 
nppmximarion (PQSCHA) ax repolted and explained. Whal makes thls framework attractive is 
its easy implementation as well as the great simplification in obtaining results for the statistical 
mechanics of complicated quantum systems. Indeed. for a given quantum system the F'QSCW 
yields M effective system, i.e. an effective classical Hamiltonian with dependence on h and p 
and classical-like expressions for the averages of observables, that has to be studied by classical 
methods. Anharmonic single-particle systems are analysed in order lo get insiglv into the 
physical meaning of the PQSCHA. and its extension to the investigation of realistic many-body 
systems is pursued aftenvards. The power of this approach is demonstrated through a collection 
of applications in different fields. such as soliton theory. rare gas crystals and magnetism. 
Eventually, the PQSCHA allows us also to approach quantum dynamical properties. 

1. Introduction 

Microscopic phenomena obey the laws of quantum mechanics and the uncertainty principle 
is unavoidable each time that the considered actions are of the order of magnitude of the 
Planck constant [I]. The consequences of this fact are far reaching in the framework of 
statistical mechanics where, by definition, one tries to reconstruct the macroscopic behaviour 
of the system starting from elementary interactions of their microscopic constituents. Since 
the notion of phase space itself is deprived of a real meaning, the statistical averages cannot 
be computed any more 'in the classical way', namely by integrating dynamical variables 
over coordinates and momenta with a suitable distribution function: one has coherently to 
start from the quantum definitions and evaluate the appropriate operator traces [2]. 

Classical averages, however, are objects usually easier to handle, especially from a 
numerical point of view. Therefore much effort has been devoted to investigating the 
possibility of defining some functions with properties similar to those of the phase-space 
distribution functions and called quasiprobubility disrriburions. Although, in a shict sense, 
these functions cannot be considered probability measures (they lack, e.g., the fundamental 
property of being positive definite), still they can provide a nontrivial physical insight 
into the properties of the dynamical system. The mathematical problem of their explicit 
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determination is often reduced to the choice of an appropriate representation for computing 
the operator traces. We shall be more precise on this in the following. Here we want rather 
to observe that the classical limiting conditions, obviously required, on the one hand allow 
for a careful investigation of the relevance of quantum effects, while on the other naturally 
suggest an approach of the semi-classical type. 

This review is devoted to a semi-classical approach leading to an effective potential 
and to an effective Hamiltonian, which allows us to recover the phase-space formalism. 
The method was introduced by Feynman [ l ,  21, improved independently by two of us and 
Feyaman and Kleinert [3,4,5,6], and eventually extended to nonstandard Hamiltonians [7]. 
Many applications proved the validity of the method. Indeed, reviews devoted to specific 
subjects of interest have been published [S. 9, 10, 11, 121. 

Semi-classical approximations can be obtained in several ways, by developing methods 
that lead to different final results. Although always exact and coincident in the classical 
limit, different methods have different conditions of applicability as far as the evaluation 
of quantum effects is concerned. The Wigner-Kirkwood expansion [13, 14, 15, 16, 171, 
the Weyl representation [18, 161 and the use of coherent states [19, 20, 211 are well known 
theoretical devices moving in this stream. Starting from the path-integral approach to the 
statistical mechanics, the effective potential is based on the fundamental idea derived by 
the renormalization group theory. It is done by integrating out the quantum fluctuations 
around the classical trajectory in imaginzuy time so that one can recover a classical-like 
configuration integral, where the potential contains some renormalized constants. Although 
exact in principle, the calculation can be performed only at some level of approximation, 
using some perturbation scheme. The choice of the unperturbed system plays a crucial role 
for a successful application. 

In the Lagrangian form a temperature dependent effective potential was firstly introduced 
by Feynman [ I ,  21. Using an inequality based on the convexity ofreal exponential functions 
(the Peierls-Jensen-Feynman inequality [22]) and free particles as a unperturbed systems, 
a variational procedure was carried out on a single parameter, depending on the average 
point of the path. This function represents the effective external potential seen by the 
particle in that point. At highest temperatures the Wipner expansion and eventually the 
classical potential are recovered, while the approximation is not sufficient to account for 
the low-temperature behaviour of solid state systems, which are better described by a set of 
harmonic oscillators rather than free particles. 

In order to overcome these difficulties, the method was later on improved so as to 
take exactly into account the conhibution of quadratic terms [3, 4, 51. In this case, the 
frequencies of the harmonic modes become themselves variational parameters and it is 
indeed possible to define an effective potential that reproduces the correct behaviour of the 
quantum harmonic oscillators at the lowest temperatures. The presence of two variational 
parameters plays a crucial role in contrast with other attempts on this subject [23, 241. 

Starting from the application to one paFticle [4,25,26,27,28,29,30, 31,32,33,34, 351, 
two-body systems [361 and transition rate theory [37, 38, 391 this method has been 
successfully used mostly for investigating nonlinear one-dimensional fields [6, 40, 41, 42, 
43,44, 45, 46,471 as well as condensed matter systems [48, 49,50, 51, 52, 53, 54, 55,561. 

The variational inequality, however, turns out to be proved only for Hamiltonians 
containing a kinetic term quadratic in the momenta with constant coefficients and a potential 
energy depending only upon the coordinates. We shall refer to these as to standard 
Hamiltonians. Recently, the approach was revisited by several people, in order to overcome 
the one-loop approximation 135, 57, 581, for treating the anharmonicity of the ground state 
[591 and for casting the calculations in the usual diagrammatic form [60,61], by an expansion 
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based on the ‘Feynman centroid density’. 
The generalization to many degrees of freedom is not at all straightforward. A further 

approximation, called the ‘low coupling approximation’ (LCA), is required [3, 4, 62, 631 
in order to do explicit calculations, even though some improvements beyond the LCA have 
been suggested 1.561. 

The appealing idea of including in the unperturbed system as much as we are able to 
deal with in an exact way can undergo some generalizations. It is worthwhile to notice that 
attempts have been made of summing on a finite number of Matsubara frequencies [64,65] 
and, more recently, new Trotter number extrapolations in path-integral Monte Carlo (PIMC) 
find their origin in the effective potential framework [66, 53, 671. 

In many cases of physical interest the Hamiltonians are not standard, as occurs, for 
instance, in the study of magnetic systems. The phase space of spin variables, indeed, has a 
geometrical structure in which a global distinction of coordinates and momenta is impossible, 
so that, in  principle. the equations of motion can be given only in a canonical formulation. 
For general Hamiltonian systems the Euclidean action is no longer real and the Peierls- 
Jensen-Feynman inequality cannot be proven for the reference systems [68] which are in 
general nonlocal, because they are dependent on the average point of the path. However, 
the general idea to integrate out the quantum contribution is still appealing and the method 
was generalized taking into account that, at least for a one-loop approximation, the quantum 
behaviour can be separated from the classical one, so that the Gaussian approximation can be 
used onIy for the purely quantum fluctuations while the classical effects are treated exactly 
by well established (and much easier) approaches. This scheme, which we introduced for 
the first time [7],  is the application of the ‘self-consistent harmonic approximation’ to the 
quantum effects only. All the aforementioned results for the effective potential of standard 
Hamiltonians are recovered and an effective Hamiltonian can be also obtained in the general 
case [69, 701. The latter derivation requires the use of the Hamiltonian path integral with 
some rules about the ordering procedure; it is indeed well known thai different quantum 
systems have the same classical limit. However, this approach presents not only a broader 
applicability, but it seems more meaningful and powerful for future applications to field 
theory. 

It is just with this more recent point of view that we derive the effective potential and the 
effective Hamiltonian for evaluating equilibrium averages of quantum quantities. Starting 
with one degree of freedom, we parallel the ‘self-consistent harmonic approximation’ 
(SCHA) to present the so called ‘pure quantum self-consistent harmonic approximation’ 
(PQSCHA). by which we recover the variational effective potential as a particular case. 

Some relevant applications, for nonstandard systems like magnetic ones [71,72,73, 74, 
75,761, showing the validity of the method for the thermodynamics of non linear condensed 
matter systems, are presented through this review. 

The last part of the paper is devoted to the challenging problem of calculating the 
quantum dynamic correlation functions at finite temperatures. We remember that these 
quantities are directly related to the spectral shape as probed, for instance, by neutron 
scattering. It is well known that field theories at finite temperature are crucial in condensed 
matter physics, but present many difliculties from both the analytical and the numerical point 
of view. Since any static correlation can be calculated by these methods [77, 6 6 0 ,  78,791, 
we have calculated the quantum dynamic correlators improving the behaviour of the 
naive moment expansion in the time domain [78, 80, 81, 821, by the continued fraction 
representation of its Laplace transform according to Mori and Dupuis [83, 84, 851. Finally, 
a generalization of the explicit expression obtained for the quantum averages has been 
proposed [86, 611 for calculating averages of operators at different imaginary times, 
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thus permitting an analytic continuation [87, 88, 891. From this observation, and from 
the assumption that the classical motion could be separated from the quantum Gaussian 
fluctuations, at some level of approximation, the possibility of extending the molecular 
dynamics to some quantum systems has been recently suggested [go, 911. 

2. Standard systems-one degree of freedom 

In this section we will derive the pure quantum self-consistent harmonic approximation 
(PQSCHA) [7,69] in its simplest version, namely the one suitable for studying a single one- 
dimensional nonrelativistic particle of mass m ,  with canonical coordinate- and momentum 
operators 4 and f i  such that [i ,  $1 = ifr, and subjected to a potential V(4) .  This system is 
described by the standard Hamiltonian 

- 1  
'H = - 2m fi* + V ( 4 ) .  

After a brief description of the harmonic (HA) 192,931 and self-consistent harmonic (SCHA) 
[93,95,96,97] approximations, both in the classical and in the quantum case, it will be clear 
to the reader how the effective potential method arises updating the main ideas underlying 
those simpler approximations by means of the new ideas and mathematical tools introduced 
by the path-integral formulation of quantum statistical mechanics. 

2. I ,  Harmonic approximations 

2.1.1. Classicui cme. Let us consider a classical system in thermal equilibrium at 
temperature T = p- ' :  its thermodynamic behaviour is completely determined once the 
(unnormalized) canonical distribution function p(p,  q )  = exp[-pl-l(p, q ) ]  is known. The 
thermal average of any physical quantity U ( p ,  q )  is indeed given by the phase space integral 

where 2 exp(-pF) is the partition function and F the free energy of the system. In the 
standard case, if we restrict our interest to those observables U ( q )  depending just on q ,  the 
kinetic contribution can be integrated out and equation (2.2) takes the form 

The recipe for a harmonic approximation is given by the introduction of a quadratic trial 
potential 

(2.4) vo(q) = w + f m 4 q  - 40)' 

whose parameters w. w and qo have to be determined according to some optimization 
criterion; the thermal average is then approximated in terms of a Gaussian distribution 

where 
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represents the thermally induced mean square fluctuations of q around qo. The simplest 
way to determine the parameters is to require that the true and trial potentials, as well as 
their first and second derivatives, take the same value in qo, 

This criterion defines the usual HA, in which anharmonic effects are completely neglected 
what is done is in fact nothing but the second-order expansion of V ( q )  around its minimum. 
It can be easily realized that this approximation worsens when the temperature is raised, 
since configurations far from the minimum become more and more likely. 

One can go beyond the HA by requiring that V&) at best approximates V ( q )  in the 
whole thermally relevant region rather than in its minimum: this would mean generalizing 
conditions (2.7) as (V&)) = ( V ( q ) )  etc, but, since the exact probability distribution is 
supposed to be unknown, one resorts to the trial Gaussian one, writing 

(V(q) ) ,  = (vo(q))o = w + fmw’uc 
( V ’ W ) ,  = (Vd(q)), = 0 

(V”(q)), = (v[(q)) ,  = mm . 
(2.8) 

These equations define the SCHA, the self-consistency being due to the w-dependence of 
ac ,  i.e. of (. 

2 

It is easy to check that a variational approach based on the inequality 

F < Fo + (V - Vo), (2.9) 
which is a straightforward consequence of the Jensen one [98], gives exactly the same result, 
in that conditions (2.8) minimize the right-hand side of this inequality. 

In the zero-temperature limit uc + 0 and the distribution (. . .),, becomes a delta 
function; therefore conditions (2.8) become identical to (2.7) and the simple HA is recovered. 

2.1.2. Quantum care. Facing the quantum problem, we have now to deal with the 
(unnormalized) density operator 

- 1  
(U)  = Z T  

= exp(-,&) and with statistical averages 

r(B 8) (2.10) 

where Z = exp(-pF) = Tr 6 and U is an observable. As in the previous subsection, we 
consider the case of U depending just on the coordinate, so that 6 = U($) ,  although, at 
variance with the classical context, the extension to the general case is not trivial at all (see 
section 3.3). 

A harmonic approximation with the trial potential V&), equation (2.4), again reduces 
the average (2.10) to the Gaussian form 

where now 
h 

UQ = UQ@) = - coth - 2mo 2 

(2.1 1) 

(2.12) 

is the mean square fluctuation of a quantum harmonic oscillator (see appendix A). As in the 
classical case, conditions (2.7) and (2.8) determine the value of the parameters appearing 
in the quadratic trial potential and then define the quantum HA and SCHA, respectively. 
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A variational approach which turns out to give the same results as the SCHA is still 

(2.13) 
In the zero-temperature limit the quantum SCHA remains different from the HA, since 

the distribution does not reduce to a delta function, as CYQ + hj(2mw) > 0 due to the 
zero-point fluctuations. 

possible, thanks to the Bogoliubov inequality [2] 

F < Fo + (fi - 2 0 ) o .  

Example. Let us consider the anharmonic potential (m = I ,  h = 1) 
(2.14) 

The HA, through equations (2.4) and (2.7), simply gives qo = 0, w = 0 and U* = U;. On 
the other hand, the SCHA, through equations (2.8). gives qo = 0 and 

(2.15) 
The last equation has to be solved self-consistently together with the definition of (YC = 
@wz)- ' ,  in the classical case, or CYQ = coth(@w/2)/2w, in the quantum one. In the former 
case the solution is w2 = w4 + 48hT, whereas it can be found numerically (e.g., 
by iteration) in the second one. Of course, the solution is temperature dependent, and it is 
seen that the nonlinear part of the potential is partly taken into account as both o and w 
depend on h. 

In figure 1 we report the exact quantum density P ( q )  = (8(q -@) numerically obtained 
for this example, compared with its approximations by HA and SCHA, as well as with the 
classical result for an intermediate temperature T = 0.3 in natural units. It appears that the 
classical density is not yet a good approximation as it indeed becomes at higher T ,  whereas 
the HA overestimates the width of fluctuations due to the strong nonlinearity. Eventually, 
the SCHA turns out to be superior, in spite of its constraint to be a Gaussian. 

As we have seen above, a harmonic approximation leads to a Gaussian configuration 
density, the difference between the classical and the quantum case being in the actual value 
of the variance (arc or CYQ). Since the variances of a Gaussian are additive under convolution, 
we can rewrite equation (2.1 1 )  separating the classical thermal fluctuations CYC: 

I 2 2  V ( q )  = p o q  + Lq'. 

IL = -3hec,~(w) 2 0' = + 1 2 k c , Q ( ~ ) .  

+ r 

(2.16) 

where 01 = CYQ - CYC can be naturally thought of as the purely quantum contribution to the 
fluctuations of the particle. Equation (2.16) can be interpreted as the classical average of the 
Gaussian broadening of O(q) on the scale of the pure quantum fluctuations. Now, in view 
of the existence of plenty of theoretical and numerical methods for calculating classical 
averages, one could speculate whether it is really necessary to retain the HA in the outer 
classical average, or it could be possible to restore the full classical Boltzmann factor. This 
idea is suggestive, because in this way one would build up an improved theory describing 
exactly the effects of nonlinearity at the classical level, as well as the full quantum harmonic 
behaviour. However, a firmer mathematical basis is in order, and the tool to accomplish 
this goal is Feynman's path-integral formulation of quantum statistical mechanics. 

2.2. Feynmn does it better! 

The (diagonal) density matrix elements in the coordinate representation are expressed by 
Feynman's path integral as 

(2.17) 
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-1 0 1 
4 

Figure 1. Norindired canfiguration probability distribution P ( q )  = (S(q - 6)) for the quanic 
oscillator (2.14) with og = I ,  A = I ,  at T = 0.3. Solid line: exact quantum result, dashed: 
quantum SCHA; dotted. quantum HA; dash-dotted: classical. 

where the path integration is defined as a sum over all paths q(u) closed on q (g(0) = 
q(pfi) = q )  and the Euclidean action 

(2.18) 

has been introduced. 
Although the exact evaluation of this integral is possible just in a few cases for simple 

potentials, the expression (2.17) makes possible a new kind of approximation through a 
simple and nice idea due to Feynman. The argument proceeds as follows: instead of 
summing over all paths in just one step, one can classify the paths by an equivalence 
relation, and consequently decompose the integral into a first sum over all paths belonging 
to the same class, and a second one over the equivalence classes. 

If the equivalence relation among paths is, as Feynman suggested, that of having the 
same nverage point, defined as the functional 

L/ dug@) (2.19) 
Bfi 0 

then each class is labelled by a real number q representing the common average point, and 
we can separate from equation (2.17) an ordinary integral over 4, 

Bh 

= / d Q  P ( q : 4 ) .  (2.20) 

The reduced density p ( q ;  Q) represents the contribution that comes from all those paths 
with 4 as average point; its explicit expression is therefore 

(2.21) 

Let us now consider p(q;  Q) as an unnormalized probability in the variable q and define its 
normalization constant as pes(#). so that p(q ;  4) = pe&) P(q; Q). Then the average of 
O(Q) can be written using (2.21) as 

1 
(%)) = 2 / dq o(q)p(q) = f / dQ (/ dq o(g)P(q;  4)) ~ ~ a ( 4 )  (2.22) 

and one recognizes pe&) as a classical-like effective density, whereas the probability 
distribution P(q; 6) concerns the particle fluctuations around the point c j .  In the classical 
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limit it can be seen that P + S(q - @) and perf(@) tends to the classical Boltzmann factor; 
i t  follows that the probability P describes the pure quantum fluctuations of the particle. In 
other words, we have made an exact formal separation between a classical-like and a pure 
quantum contribution to (O($)). 

The main problem is now the explicit evaluation of the reduced density p(q;  g), still 
containing a path integral: it is here that some kind of approximation is in order but, thanks 
to the formalism we are using, it can be a specialized one. As the path integration has been 
reduced to paths belonging to the same class, we can develop a different approximation, 
the most suitable, for each class! 

In more detail, as only paths with average point @ contribute to the path integral (2.21). 
in the action (2.18) we replace V(q(u) )  with a hial potential quadratic in the displacement 
from the average point 

(2.23) 
where the parameters w = w(g)  and o’ = w2(J) are now to be optimized so that the trial 
reduced density po(q: 4) at best approximates p(q :  g)  for each value of @. 

vo(q: j )  = w(c j  + $mw2(g)  (q - g)’ 

The explicit evaluation of po(q: g) (see appendix B) gives 

(2.24) 

with 

01 =U(@) = - 2mo (cothf - f )  f = f(g) ;@fro(<). ( 2 . 5 )  

In equation (2.24) one immediately recognizes that, within our approximation, P(q; 4) is 
the Gaussian enclosed in brackets and 

with the efecriw potential 

Eventually, the average (2.22) becomes 

(2.26) 

(2.27) 

(2.28) 

where .$ = q - g replaces the variable q ;  as a consequence, no confusion arises if we rub 
out the bar on @. We use a double angle bracket to denote the Gaussian average over the 
pure quantum fluctuations defined by P ,  so that we rewrite the last equation as 

(2.29) 

This equation constitutes the result of a rigorous derivation along the ideas developed at 
the end of the preceding subsection: in particular it is to be underlined that the variance 
a, heuristically introduced as a = 019 - o(c, turns out to be just that difference, but it is 
now well defined as a formal result. An essential condition for expression (2.29) to be 
meaningful is that a(q) remains positive for any q. As a function of temperature, 1y is 
positive and decreasing, taking the value hl(2mw) at T = 0 and vanishing as hZ@/(l2m) 
for T + W. 

Now, in order to close the approximation scheme, we still have to devise an optimization 
criterion for the parameters w(q)  and oz(q). 
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2.3. The pure quantum self-consistent harmonic approximation 

After the choice (2.23) of the trial potential, one could try to make use of the same ideas 
underlying the usual HA and SCHA, taking into account that, as a new essential feature of 
the method, both w and o2 are functions of the position. For the HA, we simply identify 
the trial potential (2.23) with the expansion of V ( q )  up to second order: this amounts to 
requiring that w ( q )  = V ( q )  and 02(q) = V"(q) for any q. This recipe can be called the 
pure quantum HA. This is surely an improvement over the HA discussed in section 2.1, 
but in many cases it can lead to unphysical results [4]. Indeed it can happen that V"(q) is 
negative: in this case .(U) can be analytically continued and in terms of the 'dimensionless 
frequency' f = phwJ2 one has 01 = (gh2/4m)(coth flf - l/f2); if f2 is negative, setting 
f = i(p, one has 01 = (ph2/4m)(l/(p2 - cotp/p), which diverges to +CO for p + K- 
(or f 2  -f -r2) and is negative for (p =- K (f2 < -n2). As a consequence, if wz(q) is 
negative, at sufficiently low temperature we have fZ < -z2 and the pure quantum HA 
breaks down. 

We then come back to the SCHA conditions (2.8) to push them down at the pure 
quantum level, eventually defining the pure quantum SCHA, or PQSCHA: 

in 
( ( v ( q + e ) ) ) = ( ( V o ( q + ~ ) ) ) ~  w ( q ) + y o 2 ( q ) Q W  

(2.30) 

Here the equation for the first derivative has been omitted, as possible linear terms of the 
trial potential do not contribute to the action. Once this self-consistent system has been 
solved, we have all the necessary ingredients to explicitly evaluate the effective potential 
and all the thermal averages through the classical-like expression (2.29). It is seen that 
for the most usual potentials the self-consistent solution for a(q)  turns out to be always 
positive, even though w2(q) can be negative [4,5]. 

We can now carry on a deeper discussion of the final results we expect to obtain by 
means of this method: from (2.22), where the separation between the classical and the 
pure quantum contributions has been performed, it should be already clear that the classical 
behaviour will be exactly described, whatever the approximations used in evaluating the 
residual path integral. In other terms, the specific choice of that approximation only affects 
the pure quantum contribution to the thermodynamics of the system; in particular. as we 
have used a quadratic approximation for the trial potential. we expect to describe exactly also 
the pure quantum harmonic contribution. In the definition of the effective potential (2.27) a 
logarithmic term appears, in the same form as the difference between the quantum and the 
classical free energy of a harmonic oscillator with frequency o(q). That term assures that 
the harmonic free energy is exactly reproduced. 

It is to be noticed that the PQSCHA and the SCHA are equivalent in the zero-temperature 
limit, where quantum and pure quantum become the same thing as any classical fluctuation 
is suppressed. It is less trivial, but perhaps even more interesting, to verify that applying 
the quantum SCHA one gets, at any temperature, the very same results that would have 
been obtained applying the classical SCHA to the pseudo-classical system described by Vefi 
171. 

Example. Let us now apply the PQSCHA to the quartic potential (2.14). 

( ( ~ " ( q  +U) )  = ( ( v [ ( q  + 0)) = m 0%). 

Equations (2.30) and (2.27) give 

oZ(q) = U; + 12h[q2 + 4 q ) l  
(2.31) 
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and the first one, self-consistently with the definition (2.25), determines the parameter w2(q)  
and hence the effective potential. 

In figure 2 we again consider the normalized configuration density P ( q )  = (S(q - B ) ) ,  
comparing the various approximations with the exact result, for two different temperatures. 
The explicit expression of the PQSCHA density [99] is found from equation (2.28) to be 

where the locd effective potential VL(q) is defined by 

(2.32) 

(2.33) 

Note that, at variance with the HA and the SCHA, the PQSCHA density is not constrained to 
be a Gaussian and is indeed superior in all cases: at T = 2 it is practically indistinguishable 
from the exact result! While both the HA and the SCHA worsen on raising the temperature, 
the PQSCHA becomes better and better. 

0.8 

0.6 

0.4 

0.2 

0.0 

T-2 1 

Figure 2 Normalized confi@on probability distribution P ( q )  = (S(q - 4)) for the quartic 
oscillator (2.14) with wg = I .  A = 1, at temperamre T = 0.5 and 7 = 2. h the lafter 
case the PQSCHA curve can hardly be distinguished from h e  exact one. Solid lines: exact 
quantum result; short dashed: FQSCHA: long dashed quantum SCHA; dotted quantum HA; 
dash-dotted classical. 

2.4. The variational method 

We have already noticed that the very same results as from the SCHA, both in the classical 
and in the quantum case, can be obtained through a variational approach; this is still true 
in the pure quantum case, although some essential differences make the PQSCHA a more 
general method with respect to the previous variational one. 

The variational approach is based on the so called Peierls-Jensen-Feynman inequality 
1 F < Fo + -(So - S)% B (2.34) 

where S is the true Euclidean action of the system under investigation, and SO a hial one, the 
functional average (.. .) being taken among all closed paths with weight exp (So[q(u)]) .  
Feynman's fundamental idea is the same as that we have borrowed and used to derive the se 



Effective potential and effective Hamiltonian 7901 

PQSCHA, namely that of classifying paths by the equivalence relation of having the same 
average point, in order to decompose the path integral. 

At this point, instead of defining the reduced density, Feynman directly jumped to the 
introduction of a trial actlon SO, letting it be a nonlocal functional through the dependence 
of its parameters on Q, The simplest choice of a free particle action 

(2.35) 

led him to a first effective potential that, though successfully applied to the polaron problem, 
lacks the desirable property of exactly describing the harmonic oscillator behaviour. Indeed 
it corresponds to set wz 0, imposing only the first of equations (2.30) so that a is found 
to be a = h2j3/(12m) and the effective potential does not contain the logarithmic term. 

The great improvement has been achieved [3, 4, 51 with the resort to a quadratic trial 
action 

(2.36) 

where q is meant as the average point functional (2.19), leading to results identical to the 
PQSCHA. 

What is perhaps less transparent in the variational derivation is the actual meaning of the 
dependence of w and w2 on the average point 2 :  although it is clear that such a dependence 
makes SO a nonlocal functional and allows us then to look for the best approximation of 
the true action in a richer reservoir of mathematical objects, it is not immediately apparent 
that what one is actually doing is to develop a different approximation for each different 
class of paths. To make the variational approach suitable also in the nonstandard case, 
one has not only to introduce the Hamiltonian formalism of the path integral, but also to 
check that Feynman's inequality can be generalized to this formalism, thus providing the 
necessary variational principle. Unfortunately this is not the case, as Feynman's inequality 
is rigorously valid just in the standard case, although it is sensible to think that it could 
be at least verified for some class of nonstandard systems, and such a conjecture could be 
(and has been) used in some specific situations. As a matter of fact, however, there does 
not exist at the moment any variational principle safely available in the general nonstandard 
case, and this makes the PQSCHA approach a fundamental tool. 

2.5. Application to some nonlinear potentials 

In order to quantify the strength of the quantum character of a system described by the 
Hamiltonian (2.1) with a given potential V ( t ) ,  it is convenient to devise its characteristic 
energy scale E (e.g., the barrier height for a double-well potential, the well depth for 
physical potentials that vanish at infinity, etc) and length scale U (such that variations 
of V comparable to E occur on this length scale) and write V ( t )  = & u ( i / a ) .  In this way 
one better deals with a dimensionless coordinate 2 = t / c .  If x, is the absolute minimum of 
u ( x ) ,  the system is characterized by the HA frequency WO = ,/-, with y2 = ~ " ( x , ) ,  
and adimensionless coupling parameter g for the system can be defined as the ratio between 
the HA quantum energy level splitting h u ~  and the overall energy scale E ,  

(2.37) 

The case of weak (strong) quantum effects occurs when g is small (large) compared to 
unity. In the following applications we shall make use of the dimensionless variables only, 
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i.e. energies are given in units of E, lengths in units of a, frequencies in units of 
on; the reduced temperature is t = I/(@). 

and so 

2.5, I .  The double-well quartic potential. This potential is 
2 2  a(x)  = (1 - x ) (2.38) 

with two symmetric minima in x, = &1. From the PQSCHA equations (2.30) and the 
definitions (2.27) and (2.25) we obtain 

2 2 f ( x )  = - 8tZ (3x2 - 30((x) - 1) 

The last two equations have to be solved self-consistently. This task is done numerically, 
and exact reference data can be obtained by numerical solution of the stationary Schradinger 
equation. 

In figure 3 we report a comparison concerning the local effective potential (2.33), 
V&) m L ( q / D ) ,  that describes in a direct classical-like way the configuration density; 
in terms of the effective potential it is given by the integral 

(2.39) 

High values of the coupling have been chosen in figure 3, in order to show how in the 
strongly quantum regime the PQSCHA can still reproduce extremely well the exact data. 

We refer to the literature for further details on the PQSCHA of the quartic double 
well [4,5,99,29]. Interesting singular potentials for which the effectiveness of the PQSCHA 
has been tested 1301 are the Dirac delta potential u ( x )  = -S (x ) ,  the harmonic plus delta 
potential v ( x )  = x 2 / 2  - S ( x )  [loo], the one-dimensional Coulomb potential Ixl/Z, the 
Morse potential u(x) = (e" - 1)'. In [30] one can also find a discussion about the 
high-temperature expansion of the effective potential. 

An interesting application of these one-particle results has been made for calculating 
the order parameter of ferroelectrics [ lol l .  At variance with the SCHA calculation, the 
effective potential method can describe the behaviour of the order parameter up to the 
hansition temperature. 

2.5.2. Central potential in three dimensions. In the case of a central potential V ( q )  in three 
dimensions ( q  = 141) i t  is possible to reduce the computations to the case of one degree 
of freedom. Indeed the angular part of the quantum problem can be separated and solved 
exactly. Exploiting this fact the particle density can be written as 

(2.40) 

where p&) (qle-Bir,1q) are the onedimensional particle densities for the Hamiltonians 

(2.41) 
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Figure 3. The local effective potential ~ ( x )  (see text) ofthe quartic double well, at different 
temperatures, for quantum coupling g = 1 and g = 5. Solid lines are the PQSCHA result and 
dots are the exact data. On raising t the local effective potential tends towards the original one 
(dashed line). The exact energy levels are also reponed by horizontal lines. 

that describe the separated contributions of different values of the angular momentum. In 
principle, an infinite number of &(q)  has to be calculated. However the centrifugal term 
makes their values less and less relevant for increasing e, in such a way that the series (2.40) 
converges exponentially rapidly. 

The same approach can be used for the central interaction of two particles, after the 
separation of the centre-of-mass motion, in terms of the relative coordinate and the reduced 
mass. A coupling constant is naturally inmoduced as in equation (2.37). In figure 4 we report 
the results obtained in the case of a Lennard-Jones potential model u ( x )  = 4(x-" - x - ~ ) ,  
with the parameters E = 36.7 K and U = 2.959 A suitable for describing the interaction 
of hydrogen molecules (m = 2.01 uma). The resulting coupling g = 2.93 tells us that 
this is a strongly quantum system, as witnessed by the comparison with the classical limit 
and by the inadequacy of the quantum corrections introduced by the Wigner expansion 
[13, 17, 14, 102, 1031. For a deeper discussion of this system and details about the 
regularization of the diverging integrals arising from the singularity of the potential, see 
P61. 

A similar system, the Coulomb potential in three dimensions, is analysed by PQSCHA 
in [28]. 

3. Standard systemsmany degrees of freedom 

The previous section has shown that the PQSCHA is quite effective in treating simple one- 
particle quantum systems. Of course, in order to make the method useful for interesting 
problems and realistic physical models, the successive step is the extension of the formalism 
to the many-particle case. Therefore, let us consider a general system with M degrees 
of freedom, i.e. canonical coordinate and momentum operators 4 = [ & t w = I , . . . , M  and 
6 E [$w}w=,,.,..M, with the commutation relations [b. $.I = i6,, (we set Ti = 1 from 
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now on), and described by the standard Hamiltonian 

1 H  fi = f fiTA2fi + V ( 4 )  = - 2 p^ilAZ,,p ,̂ + V ( 6 ) .  (3.1) 
C.Y-1 

As the matrix A' = (A',,,) is real symmehic and positive definite, there exist its positive - -  
square root A and its inverse A-'. 

4 

3 
n 

W 
x 
bD 

2 

1 

0 
1.0 1.5 2.0 1.0 1.5 2.0 

X X 
Figure 4. The pair correlation function g(r) for the Lennard-Jones interaction model for two 
hydrogen molecules L the tempentures T = 0.5'4~ 20 K and T = I.O& 2 40 K. Solid lines 
are the PQSCHA result and the squares are numerically obtained exact data [104]. The dashed 
lines report lhe classical result, and lhe daned ones are [he high-temperature approximation from 
the Wrgner expansion 

The corresponding path integral for the equilibrium configuration density at temperature 
p-' is now a sum over paths q(u) in the M-dimensional configuration space, 

where the action is 

W . ) I  = - /' du[i Qr(u)A-'Q(u) + v(n(u))] (3.3) 
0 

-P , and the measure of the path integral includes a factor [ (2ap/P)M/Z det A] 
discretized version with P imaginary time slices. 

3.1. The PQSCHA 

Let us now generalize the single-particle framework of the PQSCHA. The average point 
functional in the M-dimensional configuration space is ( I /@)  du q ( u ) .  The reduced 
density 

in the 

(3.4) 
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is such that the density matrix is obtained by ordinary integration over i j ,  

7905 

p ( d  = [ dG P'(G h).  (3.5) 

The same argument as in section 2.3 leads us to approximate V ( p )  by a quadratic polynomial 
in the deviation from i j ,  

Vo(q; G )  = ~ ( i j )  + i ( q  - ijITE2(q -a). (3.6) 
Therefore, we have as parameters the scalar w(G) and the M(M + 1)/2 independent 
components of the symmetric matrix Bz(ij) = {Bzpp( i j ) ] ,  replacing the previous scalar 
moz(@. The hid reduced density & can be evaluated analytically as shown in appendix 
C. The calculation involves the diagonalization of the dynamical matrix AB2A by an 
orthogonal matrix U(*) = { . U k , ( @ } ,  

E,, ~ k e ( A ~ Z A ) , J J e u  = &e&). (3.7) 

The reduced configuration density &(q; i j )  turns out to be a Gaussian centred at i j .  We then 
proceed as in section 2.2, introducing E = q-ij and suppressing the bar of i j .  Equation (3.7) 
tells us that V, is diagonal in terms of the 'normal mode' variables t k  = C,(UA-']k,t, ,  
where we distinguish between the original variables and theu normal modes by the use of 
greek and latin indices, respectively, in order to maintain a self-contained notation. The 
Gaussian average ((, . ,)) over E is defined by the moments 

( ( t k h ) )  = Sk@'k(q) (3.8) 
where 

Now, the pure quantum fluctuations described by E appear to be properly taken for each 
normal mode. 

As we know from the one-particle case, the PQSCHA consists in imposing SCHA 
conditions on the reduced density &, 

(3.10) 

(3.11) 
The first equation determines w ( q )  and the second one, that has a self-consistent solution 
together with (3.7), determines at the same time the matrix B2(q) and the moments (3.8). 
The average of a configuration dependent observable O(6) is approximated (see appendix 
C) by the classical-like formula 

(( vta + E ) ) )  = (( v,(P + E) ) )  = w(q)  + ; 
((aq,.aq.v(q + E ) ) )  = ((aq,,aqw v0(q + E ) ) )  = B Z p m  

oh) dQ) 

with the effective potential 

(3.12) 

(3.13) 

The above framework is also obtained [3,5] by minimizing the right-hand side of Feynman's 
inequality (2.34) [2, 681. The physical interpretation of equation (3.12) parallels the one 
we have already made in section 2.3. The pure quantum fluctuations are approximated as 
a multidimensional Gaussian with variance ak(q) for each normal mode; we will call its 
(correlated) moments in direct space renormalization parameters 

(3.14) D p d d  = ( ( ~ J v ) )  = E, { U A ~ M I ~ A ~ U  ak. 
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It is easy to express the double-bracket averages like those appearing in equations (3.10). 
(3.11), (3.12), and (3.13), in terms of a (usually limited) number of the D,,(q), using the 
well known properties of Gaussian distributions. 

Lct us introduce a shorthand notation by means of the q-dependent second-order 
differentiation operator 

(3.15) 

It is easily seen that, if the D,,(q) are understood to be unaffected by A, 

((% + €1)) =eA(') o(q). (3.16) 
This exponential gives rise to a power series (in the D) that parallels the Hartree-Fock 
resummation of one-loop diagrams, and turns out to be very useful in practical calculations. 
With this notation (see appendix C) the effective potential can be written as 

(3.17) 

where it appears that the correction to V ( q )  from the first term is of second order in the D, 
since (1 - A)eA - A'. 

3.2. The low-coupling approximation 

As in the case of one degree of freedom only, the implementation of the method requires 
a self-consistent solution of a set of equations, for any value of q. This task becomes very 
difficult for a many-particle system, since solving the set of equations (3.7), (3.8), (3.9) 
and (3.1 1) could become numerically as heavy as affording the same system by quantum 
Monte Carlo simulation. Therefore, a further simplification is in order. So, let us analyse the 
form of the fundamental formula, equation (3.12). It is apparent that, at low temperatures, 
the main contribution to the configuration integral arises from the neighbourhood of the 
minimum qo of V,(q). In this regime we could then safely approximate the renormalization 
parameters D,,(q) (or at(@, i.e. the pure quantum fluctuations) starting from their values in 
qo. On the other hand, when the temperature rises, the renormalization parameters decrease, 
becoming less and less relevant; in particular, for fk >> 1, ak(q) - ph2/12 and loses its 
configuration dependence, so that such an approximation would have little effect. 

Therefore, we are led to introduce what has been called the low-coupling approximalion 
(LCA). We expand the dynamical matrix Bz(q) around the minimum qo of V,(q), 

(3.18) 

where BZ = B2(qo), and consequently we expand the frequencies &q) = oz +So&), 
the orthogonal matrix U(q)  = U+GU(q), and so on (for all quantities taken in qo we omit 
rhe argument). This allows us to deal with Gaussian averages ((. . .))o which do not depend 
any longer on the configuration: the self-consistent equations have to be solved only once, 
with a great simplification in implementing the method. After this expansion (see appendix 
D for details) the effective potential reduces to the simpler form 

B2(q) = B2 + GB'(q) 

(3.19) 

and qo is the solution of eAaq V ( q )  = 0, since the other terms of V'e are independent of q. 
Here, a self-consistency arises from the dependence on qo of the renormalization operator 
eA. Actually, in most cases the solutions of this equation can be picked out by symmetry 
considerations. 
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The calculations are particularly easy in the case of a translafion invariant system, with 
a translation invariant minimum: the matrix U is just a standard real Fourier transformation, 
which also diagonalizes the 'reciprocal mass' matrix A', 

and the renormalization parameters can be written as 

DFV = u k f i u k u  m ; ' f f k .  (3.21) 

Using this expression, the LCA effective potential (3.19) can be easily obtained from the true 
one, V ( q ) .  Only a reduced set of the renormalization parameters will be explicitly needed 
in V,. For instance, an additive local interaction term in V ( q )  like V , ( q )  = E, u(q,) 
involves the only renormalization parameter Do = D,, (due to translation symmetry, it is 
independent of p),  

Indeed, Au(q,) = D,,a;,,u(q,), so that it is immediate to get 

(3.22) 

where U@") is the 2nth derivative of g(q,) .  This example can be easily generalized to other 
kinds of interaction term, with the possible appearance of a few different D ,  which are the 
only ones to be determined (for instance, by an iterative method), because only they appear 
in the right-hand side of the LCA version of equation (3.11). Moreover, their evaluation 
has to be performed only once at a given temperature. Therefore, by the LCA we benefit 
from the great advantage that the effective potential can be directly used in classical-like 
calculations. This means that any known classical results and methods can be applied, 
and, e.g., classical Monte Carlo computations can be used. In addition, improvements of 
the LCA are possible, for instance by accounting at lowest order for the corrections to the 
renormalization parameters [78]. 

It is apparent that for a harmonic potential the exact results are still recovered in the 
LCA. As for the comparison with the SCHA, one can verify that there is still full agreement 
at zero temperature. Note that the effect of the classical part of the fluctuations on the 
renormalizations themselves has been disregarded. Moreover, it has been shown 130, 71 
that in the high-T limit the above framework agrees, at least within order fi2,9, with the 
Wigner-Kirkwood expansion method [13, 15, 16, 17, 141. 

3.3. More general awrages and Weyl ordering 

Let us face the problem of calculating averages of a general observable b@, c), that depends 
on both canonical variables. The hat over 8 tells us that we cannot regard it as a simple 
functional dependence on @, B ) ,  since these variables do not commute. In order to write 
a classid-like expression for (e), we need a one-to-one rule for associating functions, 
defined in the phase space of points (p, q), to operators, acting in the Hilbert space of states 
of the system. There is arbitrariness in this choice, due to the infinite possible choices of 
ordering rules for the pairs (b,. 4,). Here we use Weyl ordering [ 14, 1051, which associates 
to any operator b a function Ob, q), called the Weyl symbol for 8, in the following way: 

(3.24) 
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This rule satisfies a number of nice properties [14]. Among them, we recall that the trace 
of the product of two operators 61 and 6 2  coincides with the phase-space integral of the 
product 0 1 0 2  

(3.25) 

and that U@, q) is real if and only if b is self-adjoint. The function Ob, 4) is connected 
with the matrix elements of 6 in the coordinate representation by 

Note that the arguments are used to distinguish between the matrix elements 0(q",  4') and 
the Weyl symbol O(p, q) for the operator 0. It is sometimes useful to obtain the Weyl 
symbol from the p-q symbol Op-& q )  11051 whose functional dependence is obtained by 
shifting all momentum operators to the left of the coordinate operators, taking into account 
their commutation rules, 

The quantum thermal average of an observable 8 being defined as  Tr(6,5), we have 

so we can find the wanted expression by calculating the Weyl symbol for the PQSCHA 
density matrix, as done at the end of appendix C, equation (C.10). Eventually. one gets the 
following PQSCHA expression for thermal averages: 

(3.29) 

where 

An = = wr(4) coth f.k(P). (3.30) 

By the average over the coordinates it appears that the momentum distribution P ( p )  = 
(a@ - 5)) is not a Gaussian. However, in the LCA, where expression (3.29) is formally 
identical, it becomes Gaussian, since A, - &(no) is fixed at its value in qo. 

4. Standard systems-applications 

4.1. Kink bearing fields in one dimemion 

This has been the first application of the PQSCHA in a system with many degrees of 
freedom [3. 4, 41, 42, 43, 44, 45, 106, 1071. A Lorentz invariant Hamiltonian for a scalar 
one-dimensional field $(z) (h = c = 1) is 

where u ( q )  is a local potential with d'(qm) = 1 in its absolute minimum qm, p is the 'field 
mass' and g2 is the usual field theoretical coupling constant. iC(z) is the momentum density, 
[$(z). i(z')] = is(z - z'). The low-energy excitations are quasi-particles with relativistic 
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energies &k = m. If the absolute minimum of u ( q )  is degenerate, the classical field 
admits kink excitations that connect different minima. In particular we have the p4 model 
for u(x) = (xz - 1)’/8 and the s i n d o r d o n  (SG) model for u ( x )  = (1 - cosx), with 
classical kink energy EK = 2p/3g2 and cK = 8p/gz, respectively. The discretized version 
of the above model for a chain with spacing a and N sites is ‘I? = (g2/2a)  xi 6: + V(G), 
with 

The coordinates are G = [ti = g$(z i ) )  and their conjugate momenta6 = [& = ag-’?(zz)). 
Equation (3.19) gives the LCA effective potential; it can be calculated using (3.23) in 
terms of the renormalization parameter Do(T),  equation (3.22), with mk = ag-’ and 
m i  = p 2 ~ ’ ( T )  + 4a-’sinZ(ka/2). where ~ ~ ( 7 )  depends on Do(T). Eventually, Ired@ 
is expressed as the original potential (4.2), with u ( q i )  replaced by a proper v,n(qi). For the 
two models considered we have: 

Kz(T)  = 1 - 300 U,&) = ;(x’ - 1 -k 3&)’+ $DO’+ H(T)(p4) 

K’[T) = eCDo“ U&) = e-Do’Z(l - cosx) + $0; + H(T)(SG) 

where H ( T )  = [p2aZ/(gZN,6)] xk In(sinhfk/fx). The quantum thermodynamic quantities 
can be then obtained by numerical transfer matrix [108], making their calculation not only 
feasible, but also very easy. The results are reliable as long as the Ginzburg condition 

sufficiently low T .  The reasonability of this criterion has been recently proven through 
a check against accurate quantum Monte Carlo data for the p4 chain [ 1091. The cited paper 
also proves the enormous amount of simplification obtained by the PQSCHA, since the 
quite long Monte Carlo runs made in order to get accuracy for the internal energy turned 
out to display a considerable statistical error on the specific heat. 

Furthermore, we would like to note that the PQSCHA approach to the SG chain model 
justifies and improves an earlier [ 1101 rearrangement of the high-T expansion, made by 
adding the (bare) harmonic behaviour and simultaneously subtracting the corresponding 
terms from the series. 

The PQSCHA approach also permits analytical work, and in the case of the sine-Gordon 
and of the p4 fields all the results that were obtained by specializing the quantum SCHA to 
the vacuum and the one-kink sectors [ l l l ,  112, 1131 are naturally recovered by performing 
the classical SCHA with the effective model [43, 441, starting from the absolute minimum 
and from the one-kink configuration. 

In the continuum limit Do(T) + 00 and one replaces the bare field mass p with its zero- 
T renormalized counterpart po = J*K(O), obtaining a formally identical expression of U,&) 
up to order g4, in terms of the finite renormalization parameter D‘(T) = D ( T )  - D(0). In 
the (04 case the coupling constant has to be renormalized as well [45]. In figure 5 we report 
a comparison with quantum Monte Carlo data and exact Bethe ansatz results for a quantity 
that is very sensitive to nonlinearity, namely the excess specific heat (that is the difference 
between the specific heat and its counterpart in the harmonic approximation). The PQSCHA 
turns out to be complementary to the Bethe ansatz, whose equations are affordable only for 
very high values of the coupling [ 1141. 

We refer to the papers quoted at the beginning of this subsection for a deeper discussion. 

v,(qo)Do(T)/ZK(T) (4) << 1 is satisfied; if the coupling is strong enough, it breaks at 



7910 A Cuccoli et a1 

0.1 

6 C  

0.0 

0.0 0.5 

Figure 5. Nonlinear contribution to the specific heal density against tempenture for the sine- 
Gordon field. The length unit has been chosen acwrding to the coavenlioo h = c = E K  = 1. 
Solid lines: F'QSCHA data for different values of g2. Dashed line: Belhe onsob exact results 
from I1141 for the lowest available coupling g2 = 0.8~. For lh is strong coupling the difference 
agrees with the estimation of the terms -g4 thal are neglected in the LCA [45]. Symbols: 
quantum Monte Carlo data for g2 = 0.8, at 'discreteness' panmeter pa = 0.34 (triangles) and 
0. IO (circles) from 1661, properly scaled as discussed in [45]. 

4.2. Toda and Lennard-Jones chains 

One-dimensional (ID) systems of atoms tightened together by nonlinear forces represent 
the field of application where the effective potential method displays at best all of its power. 
In fact, apart from the almost trivial case of a single particle, in 1D systems we get the 
biggest gain by the use of the effective potential. The actual computational effort needed 
to evaluate quantum thermodynamic properties, which by Trotter decomposition is easily 
shown to be equivalent to that of a 2D classical system, is in fact brought back to that 
of a classical ID problem. And for the latter different methods, both numerical [lo81 and 
analytical [115, 771 are available to evaluate, in principle exactly, the partition function 
and other relevant static quantities. In this section, we give a survey of the applications 
of the effective potential method to systems where the interaction is only between nearest 
neighbours, i.e. 

(4.3) 

For such systems, within the LCA, the effective potential may be written again as a 

V ( d  = C,u(qw - qp-1). 

sum of pairwise interactions, I$:rr(q) = E,, u,:rr(q, - q,-I), where 

1 
D I  2(D,, - D,,+l) = - 4 sin2 (kdj2)  ak 

m k  

being the renormalization parameter typical of one-dimensional systems with nearest- 
neighbour interaction only, and d the lattice constant, i.e. the thermal equilibrium average 
distance between two neighbouring particles. 
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As a first example of a nonlinear chain we consider the Toda lattice. Such a model 
lattice is known to be exactly integrable both in the classical [ I  16, 117, 1181 and quantum 
case 11191, and even if dynamical integrability does not imply necessarily that also 
thermodynamic quantities can be exactly evaluated, the exact partition function of the Toda 
lattice is known in analytic form for the classical system [IZO], and has been obtained 
numerically for the quantum one by the Bethe ruasatz [121, 122, 123, 124, 1251, so that 
reference data are available to appreciate the value of the effective potential method. 

The nearest-neighbour interaction potential introduced by Toda is 

ro is the position of the minimum of u(r),  the constant b rules the nonlinearity of the 
potential, while the ratio a / b  sets the energy scale. In terms of it and of the characteristic 
frequency of phonons WO = 4- = of the system, we define the coupling 
parameter g ( h o o ) / ( k / b )  = Cfibf)/(2,L$, which rules the strength of the quantum 
effects. When g 5 1 the LCA may be applied, and the effective nearest-neighbour potential 
is [46] 

(4.7) a 2 - b b r  ue&) = - eDlb ’ e 
b 

0’ + a(r - ro) + B ( T )  + H ( T ) .  

E ( T )  and H ( T )  ( H ( T )  is the logarithmic term introduced in equation (3.13)) are constants 
depending only on temperature. 

As the effective potential (4.7) has the same functional form as the original potential, 
the partition function, relevant thermodynamic quantities and correlation functions of the 
quantum system can be obtained analytically [46] in term of the Euler r-function and its 
derivatives, as in the classical system. Examples of the results obtained [46] are shown 
in figures 6 and I where the specific heat and the displacement correlation function of 
two neighbouring atoms are reported. Specific heat results reproduce those of the more 
cumbersome Bethe ansatz calculation, while the correlation function of the quantum Toda 
lattice appears as a result actually attainable only by the effective potential method. 

By the same procedure as introduced for the Toda lattice, the LCA effective potential 
for a Morse interaction may be also constructed, and the thermodynamic quantities can be 
computed again analytically [47]. 

When more realistic potentials are used, one has to resort to numerical calculation. 
However [77], for one-dimensional systems with nearest-neighbour interaction this entails 
only the numerical solution of a nonlinear equation. 

One of the most widely used interaction potentials in solid state and molecular physics 
is the Lennard-Jones potential: 

u(r) = 4~ [(u/r)I2 - (u/r)‘j] (4.8) 

whose coupling parameter may be defined as g = [(h2u”(r~))/(msu2)]~. ro = being 
the classical equilibrium distance of nearest-neighbour atoms. The Lennard-Jones chain has 
been studied as a prototype model of three-dimensional rare gas solids, and both static and 
dynamical behaviour has been addressed, by Monte Carlo computation [126], molecular 
dynamics simulation [SO] and effective potential [48, 78, 80, 821. For such a potential, as 
for all the potentials not having a very simple analytical form like Toda, Morse or sine- 
Gordon (see the preceding subsection), the series given by the application of the operator A 
cannot be resummed in a closed form, and the LCA effective potential has to be taken in its 
original form (4.4). For ill-behaving potentials like Lennard-Jones, care must be taken with 
the series expansions of equation (4.4). as they have only asymptotic character, diverging 
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Figure 6. (a) Specific heat at constant length CL as a function of t ,  for d = ' 0  and diffeenl 
values of g (solid lines): the dotted lines give the corresponding curves in the selfamistent 
harmonic approximation, and the dashed line is the classical result (E = 0). The filled circles 
arc the Bethe msdz results by Heder and Menens [I231 for g = 0.5 (please note that in the 
paper by Hader and Mertens 11231 a different definition of the reduced temperature is used, so 
that the reduced temperature of this figure, f = k~Tb/?a ,  differs by a factor of four from that 
of figures 7 and 8 of 11231). (b) Specific heat at ConsWnt length, CL, f o r d  = Q, and at constant 
pressure, cp,  for p = 0, as a function of I for g = 0.5; the solid lines are thc results of the 
variational method, the open and hlled circles the Bethe amufz results (cf. figure 7 of [ 1231) 
and the dashed lines the classical results. 
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Figure 'I. Position-position correlation function Cqu(n = 1) LC,(n) = {(&in - Ci - nd)')] 
for g=OS versus the reduced temperature I = k a T b / k .  The units of the y-axis are I/#. Solid 
line: quanNm Toda chain; d a s h h u e d  line: quantum h o n i c  chain; dashed line: classical 
Toda chain; dotted line: classical harmonic chain. 

for any finite value of the renormalization parameter DI. Despite this, when the LCA makes 
sense, onIy the very few first terms of the series are relevant, and reliable results may still 
be obtained. In figure 8 the internal energy and specific heat as given by the effective 
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potential [48] are reported for g = 0.76, a coupling which corresponds to the values of 
the Lennard-Jones parameters typical for neon, and compared with heavily computer-time 
consuming PIMC simulation results [126]. The good agreement between effective potential 
and PIMC data is not limited to macroscopic thermodynamic quantities, but is maintained 
also when more complicated static correlation functions are considered, as it will be shown 
in section 7.2 (figure 14). 

4.3. Rare gas solids 

In the previous sections we showed some applications of the effective potential method 
to simple zero- and one-dimensional quantum models, where full benefits result from the 
simplicity of the corresponding classical problem. However, the method displays all of its 
power also when it is subjected to the most stringent test for a physical theoretical device, 
i.e. when its ability to reproduce experimental data is probed. Indeed, the effective potential 
method has been successfully employed to describe the thermodynamic propetties of rare 
gas solids at low and intermediate temperature [49, 50, 53, 52, 51, 54, 127, 11, 56, 591. It 
is in the latter temperature region that it reveals itself to be particularly useful, as the other 
available theories. e.g. the SCHA and the ISC (improved self-consistent) methods, become 
rapidly no longer reliable when the temperature is not very low [50, 51, 111. 
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Figure 8. Equilibrium internal energy U and specific heat c per atom for the infinite Lennard- 
Jones chain and g = 0.76. Full line: results of the effective potential calculation; dotted line: 
harmonic approximation; dashed line: clssical result; circles and triangles: quantum Monte- 
Carlo data from [126]. 

All the applications of the effective potential method to rare gas solids are based on its 
variant usually known as EPMC (effective potential Monte Carlo). Indeed, the definition 
and evaluation of the effective potential for a rare gas solid, modelled as a 3D array of 
atoms interacting by a pair-wise potential, closely resemble the procedure already described 
for the Lennard-Jones chain, apart from some technical modification due to the appearance 
of different phonon branches and the possible inclusion of interactions beyond the nearest 
neighbours. But the biggest difference between one- and three-dimensional systems is that, 
for the latter, the classical problem itself is not easy and can be afforded only numerically, 
i.e. by Monte Carlo simulations or molecular dynamics (MD) calculation. By the way, we 
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would like to remark that MD in conjunction with the effective potential may be safely used 
only to access quantum static averages, as there is no ground that the classical dynamics 
driven by the effective potential can constitute a good approximation of the true quantum 
dynamics of the system. 

The numerous papers devoted to rare gas solids addressed different aspects of the 
problem, showing the effectiveness of EPMC; here we give only a sketch of the main 
results. For the heaviest rare gases (xenon, krypton and argon) the LCA at the lowest order 
already allows us to reproduce the experimental data for the specific heat and the equation 
of state, starting from the lowest accessible temperature up to the melting temperature; an 
example of the result obtained for argon using the Lennard-Jones potential (4.8) is shown 
in figure 9. When neon is considered the contribution coming from LCA highest-order 
terms becomes more important [50]; an improvement of EPMC which takes into account, 
in a perturbative way, also the renormalization effects of the cubic term of the expansion 
of the potential around the minimum, has been recently proposed [56], so that also at very 
low temperature EPMC is competitive, with respect to all other methods, in describing the 
thermal properties of solid neon. 
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T (K) T (K) 
Figure 9. Equilibrium density p (in units I/o3) at zem applied pressure (a) and specific heal 
per atom cu at constant volume (b) of solid -on. Open diamonds and full line through them: 
MC classical results; open circles and full line through them: EPMC quantum results 1531: filled 
squares: experimental data [128]. 

As already shown for the Lennard-Jones and Toda chains, EPMC allows us also to 
evaluate the quantum thermodynamic average of microscopic quantities. Among them, 
the kinetic energy per particle may be of interest, as has been directly measured in deep 
inelastic neuwon scattering (DINS) experiments [129, 1301. The LCA expression for the 
kinetic energy per particle [54] 

(4.9) 
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where 

(4.10) 

clearly shows how the classical Gaussian dismbution of momenta is modified by 
the quantum interplay between coordinates and conjugate momenta, which makes ( k )  
dependent on the interaction potential U between particles. Figure 10 shows the 
results obtained using the Lennard-Jones interaction potential, compared with some DINS 
experimental data. The agreement for argon may be considered very good, if we recall 
that the LJ potential is a crude approximation of the true potential, which should include 
multi-body effects. 
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Ti E T (K) 
Figure 10. Kinetic energy per atom versus tempermure [54]. Data for solid W neon (full 
triangles) were obtained by PIMC; data for argon (diamonds), krypton (circles), and xenon 
(squares) by EPMC. The solid line is the classical resulr e~ = ( 3 / 2 ) T ,  the open triangles are 
expimenmi data for neon [129], and open diamonds are experimental data for argon [1301. The 
scaling used in (a). where reduced units are used for blh axes, gives a representation depending 
only on the coupling consmt g. Plot (b), where dimensional units are employed. shows the 
quantum kinetic energiu at low temperatures are comparable for different rare gases, in spite 
of the quite different quantum couplings. 

A more complete discussion on the application of EPMC to rare gas solids, together 
with a comprehensive account of open problems for such systems and a comparison with 
other theoretical merhods, may be found in the papers cited above, and especially in the 
review paper by Cowley and Horton [l l] .  

5. Nonstandard systems 

5.1. Phase-space path integral 

In this section we briefly recall the expression of the Hamiltonian (or phase-space) path 
integral. Let us consider a quantum Hamiltonian &@, 3) representing a system with M 
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degrees of freedom. The path integral giving the Weyl symbol (see section 3.3) for the 
quantum mechanical propagator exp[-iX(rZ - t l ) ]  is derived and discussed in [l05], and 
the path integral for the matrix elements p(q", q') can be obtained by performing the Wick 
rotation to the imaginary time p = i(tZ-tl), and using equation (3.26), as shown in appendix 
E. The outcome is 

The limits on the integral imply that the sum is over all paths (p(u), a(@)), U E [O, PI, with 
the constraints q(0) = q' and q(p) = 4". The action S[p,  q] is a local functional containing 
the Weyl symbol for 2, 

B 
S[p, SI = 1 du [iP'(U)&u) - ~ - I ( P ( u ) ,  d u ) ) ] .  (5.2) 

For standard Hamiltonians (3.1) the momentum path integrals appearing in the above 
formulas can be explicitly evaluated, leaving Feynman's coordinate-only path integral, 
equations (3.2) and (3.3). 

5.2. PQSCHA for nonstandard Hamiltonians 

The derivation follows the same scheme of the standard case, section 3, so that we will 
comment only those parts that are peculiar to the nonstandard case. First, since we are 
dealing with a phase-space path integral (5.1), the average point of a path is given by 

so that (5.1) can equivalently be written as 

~(4". 6) = J d8dij  8(q", q'; 8. C) 
where the reduced density 

(5.3) 

(5.4) 

collects the contributions from those paths with @, i j )  as average point. In the place of the 
Weyl symbol 'H@, q) we put, generalizing the trial potential (3.6), a trial function 

'How, gip, 0)  = w t d 6pT Az6p + Sp'XSq+ 1 6qT B'6q (5.6) 

where 6 p  = p - p and 8q  = q - cf. Of course, the c-number w and the real M x M matrices 
A' = (A',,], X = { X g v ]  and B2 = (B',,} are allowed to depend on @,i j ) ,  and are 
to be determined in order that 80, i.e. the path integral (5.5) with 'Ho instead of 1-I in the 
action (5.2), at best approximates 6. 

In order to reduce Ho to its normal form [I311 we diagonalize the momentum part 
through the canonical transformation @, q) --t (A-'p, Aq), and then introduce the 
orthogonal matrix U@. q) = (Ukg@, q)]  that diagonalizes the coordinate part, 

(5.7) E,, U ~ ~ ( A B ~ A ) , , U ~ ,  = 6kc  [w,(P, 2 -  q)  - + a)] .  
Transforming the original canonical variables as 

@, q)  (UA-'p,  UAq) (5 .8)  



~. Effective potential and effective Hamiltonian 7917 

the matrix X in the mixed term becomes then (UA-‘XAU’)k( = q e @ ,  q);  therefore, 
in order to decouple U0 as a sum of harmonic oscillators we must restrict the set of free 
parameters setting to zero the off diagonal elements of (uke}, requiring 

(UA-’XAUT),, = & e  uk@, 9). (5.9) 
Note that with this choice 710 cannot exactly describe quadratic couplings that are non- 
harmonic, as the charged particle in a uniform magnetic field [132]. In practice, the 
independent parameters of ‘Ho are replaced by the scalars w i  and oi;, and by the independent 
components of the matrices A and U .  

The evaluation of the path integral for the reduced density $0 is reported in appendix F. 
The Weyl symbol for DO, equation (F.5), determines a Gaussian distribution in phase space, 
centred in @I, 0) , so that we use the pure quantum fluctuation variables (17.5) in the place 

(5.10) 

Again, we rub out the bar over p and q and use the double-bracket notation for the Gaussian 
average determined by p0; i t s  moments are ((17)) = ((5)) = 0 and, from equation (F.7). 

of @? d> 
@.Q) = @ +  17. Q+ 5 ) .  

(5.11) 

It clearly appears that now, at variance with the standard case, the separation of the pure 
quantum fluctuations is made also for the momentum variables, and the cross-correlations 
are represented through the parameters ut. In the direct phase space, equations (5.11) 
correspond to the renormalization parameters 

DE’@. q) = ((vrvv)) D z ’ ( P 3  q) = ((v&)) D$’t@. q) = ((t&)). (5.13) 
Next, in analogy with equations (3.10) and (3.11), we impose the PQSCHA conditions 

in order to determine the parameters of Uo. For w we have 

(5.14) 1 L ’ h  9) = ((ut@ + II. P + E ) ) )  - Ck4@. 4) Wk@> Q) 

and for the matrices A*, X ,  BZ, 
A’JP. 9) =((a,a,,.l-t@+17,n+n)) 
x,&J. q) = ((apFa,,.n@+ 17, q + a)) 
B’W(P, q) = ((a,.a,,.l-tt@ + D .  q + €1)). 

(5.15) 

Then we approximate the true density p(q”. q’) using DO in equation (5.4). The associated 
Weyl symbol is found by integrating equation (F.5). and by (3.28) the expected classical-like 
expression for the average of an observable 6@, B )  follows: 

with the effective Hamiltonian 

(5.16) 

(5.17) 
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In the standard case the above expressions reduce to the corresponding equations of section 3. 
In particular the matrix A’ becomes constant and X = 0. 

The differentiation operator (3.15) is naturally generalized in order to account for the 
momentum pure quantum renormalizations, 

m , q )  = ~ , , [ ; D p c p m p , , a , ,  + ~$)@d a,,.a,, + ; ~ : ~ p ) m ~ , , ~ a , ~ ]  (5.18) 

with the derivatives not operating on the D, so that 

((U@ + v. 4 + E))) _= eA(p.q) W ,  q)  (5.19) 
and using the obvious generalization of the identity (C.9) 7ffi can be written in a form with 
a more evident renormalization part: 

(5.20) 

Physically, equations (5.17) and (5.16) mean that the system tests its ‘energy surface’ 
only on the average over the neighbourhood of a phasespace point, and all observables 
are to be smoothed on the scale of the pure quantum fluctuations, which at T = 0 satisfy 
Heisenberg’s uncertainty principle. Remarkably, as all pure quantum renormalizations are 
vanishing in the classical limit --). 31, so Weyl 
ordering appears to have a privileged role; this is not a bare consequence of our initial 
choice, as i t  can be verified that the PQSCHA gives Weyl symbols in the classical limit, 
even starting \*.ith different ordering rules. By construction this Hamiltonian PQSCHA 
formalism is exact when applied to harmonic Hamiltonians, and for standard systems it  
reduces to the effective potential method of section 3. 

5.3. The low-coupling approximation 

Solving the PQSCHA equations (5.15) and (5.1 1) is more involute than in the standard case, 
so the LCA is again in order. The reasoning made in section 3.2 is naturally generalized: 
namely, at low T the main conhibution to the phase-space integral (5.16) arises from 
the neighbourhood of the minimum @o. 40) of 7fe&, q), and when T is raised, the 
renormalizations decrease and their dependence on @, q) weakens as well. Following 
the procedure of section 3.2, we split the matrices (5.15) as 

= $ f i q  + 0, for high T we have 

A’@, q)  = A‘ + SA2@. 4) 
X@, 4) = x + SX@, 9) 

Bz@, q) = B2 + 6B2@, q) 

(5.21) 

(arguments of quantities taken in @o, qo) are omitted) and we end up with the LCA effective 
Hamiltonian 

and the minimum @o, qo) is the solution of (ap, an)eA‘H@, q)  = 0. 

U@O,  qo) is a Fourier transformation and ( U A 2 U T ) ~ ~  = m;’ &. so that 
For a translation invariant system with translation invariant WO, qo) the matrix U = 

C , , U ~ p u ~ v e A  ap,cap,n@o, Po) = m;’ 
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It is usefd in practice that the parameters m k ,  q and mi appear as the coefficients of the 
harmonic approximation to ‘&. In direct phase space the LCA renormalization parameters 
are then expressed as 

The same conclusions as drawn in section 3.2 about the comparison with the SCHA are 
still valid here. 

6. Nonstandard systems: applications 

The aim of this section is to show how to apply the PQSCHA to magnetic systems: the main 
peculiarity of such systems is that, as they are described in terms of angular momentum 
operators, their Hamiltonians are intrinsically nonstandard. 

The relevance of the PQSCHA is highlighted in this context, where semiclassical 
methods for standard systems cannot be used, unless one reduces the spin model to some 
canonical standard one, approximating or even cancelling out those terms of the Hamiltonian 
that make it non-standard, which usually means to renounce the description of the most 
interesting and peculiar nonlinear behaviours of magnets. 

The ideal scheme to apply the PQSCHA is the following. First of all, as the method has 
been developed for canonical quantum Hamiltonians, the angular momentum operators have 
to be written in terms of canonical ones by means of a suitable spin-boson transformation. 
Once derived the b@, 6) form of the operators corresponding to the interesting physical 
observables, the determination of their Weyl symbols is in order. The PQSCHA leads 
now to the evaluation of the renormalization coefficients appearing both in the effective 
Hamiltonian ‘He&, 4) and in all the other statistical averages. The inverse of the classical 
analogue of the spin-boson transformation used at the beginning, eventually leads to the 
effective spin Hamiltonian X,a(s-’, s y ,  sz), sf, s: and sf being now the three components 
of a classical unit vector sitting on site i. 

This scheme is somewhat ideal in that some additional assumptions and approximations, 
depending on the specific system under investigation, have to be usually introduced on the 
way to the final result; in particular, both the quantum spin-boson transformation and the 
Weyl ordering have to be handled carefully, as they could hide subtle traps. 

6. I .  Easy-plane ferromagnetic chain 

The PQSCHA has been first applied [72] to magnetic systems in order to study the 
thermodynamic properties of the easy-plane ferromagnetic chain (EPFC), described by the 
spin Hamiltonian 

where J and D are the exchange and anisotropy constants, g, is the gyromagnetic ratio, H 
is an in-plane magnetic field and = (if, if, 3;) are spin operators with &IZ = S(S+ 1) .  

The EPFC is not only a ‘toy model’: there is a real compound, CsNiF3, whose magnetic 
ions are arranged as chains in the lattice in such a way that the magnetic exchange coupling 
between the chains is very weak. Then, the behaviour is practically one dimensional (above 
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the 3D ordering temperature TN = 2.7 K) and is described by the Hamiltonian (6.1), with 
S = 1, J = 23.6 K, D = 9 K, g, = 2.4. One of the main reasons for this model to be 
the ideal candidate for the first application of the PQSCHA resides in the plentifulness of 
experimental, theoretical and numerical works available on it. that allow us to check the 
validity of the PQSCHA through an exhaustive comparison with previous results. 

The ‘easy-plane’ character of the model suggests we make use, for each spin operator 4 
(site index understood), of the quantum W a i n  transformafion [ 1331 to canonically conjugate 
operators [@, 31 = i 

S*(S~; .  @) = e“JS(S+ I )  - SZ(?Z + 1) (6.2) 

This transformation is sensible as long as (@) c S; if the temperature is not too high, this is 
ensured by the easy-plane anisotropy of the model. Note that, as $5 represents the azimuthal 
angle, we prefer this notation in place of i .  

The transformed Hamiltonian is a relevant example of a nozstandard one, whose Weyl 
symbol, defining S =- S + 

.^ 
S-(SZ, 4) = (i++)t. 

and the scaled momenta Fi = $IS,  turns out to be 

i=l 

I 

where E = JS’, h = g b e H / ( J S )  and y = 5020) ;  moreover we shall use in the 
following the reduced temperature t = T / &  = T / ( J S 2 ) .  Note that disregarding anharmonic 
terms containing pi leads to the plannr model; and if one furthermore approximates 
cos((oi - rpi+l) - 1 - (yq - rpi+1)~/2 the (modified) sineOordon model [41] is recovered. 

The LCA and the symmetry properties of the model make equation (6.3) the only 
ingredient we need to write down the renormalizations coefficients 

The self-consistent ‘mass’ and ‘frequency’ parameters mk and oJk enter the definition of the 
dimensionless quantities 

whose evaluation, being f* = Qkbk/(2?t). closes our self-consistent renormalization scheme. 
The coefficients (6.4) appear in the meaningful combinations DL = Df”, Dll = Dp), 
Dl, = 2(D/y)  - DE:) and 8’ E 1 - &DL. 

After the effective Hamiltonian Rea@, rp) corresponding to equation (6.3) has been 
determined, the transformation 

sf = p i p  s; = J-COSV~ si Y - J 7  - 1 -(pi/e) sinpi (6.6) 
eventually leads to the effective classical spin Hamiltonian 
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- 
where si = (sf,  sr, s:) are now classical vectors of unit length Isi12 = 1, while h = he-iDII 
and r = e2 e-iOl. 

Equation (6.7) shows a renormalization of the magnetic field (h + z) and of the 
overall energy scale (by a factor of 0’); an exchange anisotropy term ( r )  appears as well; 
it accounts for the quantum enhancement of the out-of-plane fluctuations in competition 
against the easy-plane anisotropy. The quantum partition function is expressed, in terms of 
the effective Hamiltonian, as for a classical spin system 

(6.9) 

where si varies on the unit sphere; in the one-dimensional case, integrals like the one 
appearing in equation (6.9) can be easily evaluated by means of the classical transfer- 
matrix method [134], so that, by means of equations (5.16) and (5.19) all the interesting 
thermodynamic averages can be studied. As an example we report in figure 11 the results 
for the ‘excess’ specific heat of CsNiF,, i.e. the measured difference between the specific 
heat with and without applied field (the experimental measurements are particularly accurate 
since the lattice contribution is subtracted). This quantity generalizes the one reported in 
figure 5 for the sineGordon model, and is particularly sensitive to nonlinearity. The perfect 
agreement of the PQSCHA result with experiments comes from the solution of the problem 
in two aspects. Firstly, the ‘classical counterpart’ of the S = 1 spin chain is identified by the 
correspondence with a spin length = 3/2 (and not unity, as in a naive approach), which is 
the correct model to start with in accounting for quantum effects; secondly, the nonlinearity 
in the out-of-plane variables is taken into account thanks to the Hamiltonian PQSCHA, 
and this gives quantitatively correct results, whereas the (standard) quantum planar model 
proves to be inadequate. 

For the spin correlation functions, once one has determined the Weyl symbol for the 
operator product iFi,!, evaluated the average e*SfS? and reconstructed the spin variables 
following equations (6.6), one finally gets 

2 = e-@F = ds, . , , dsN e-8‘?lcn(sr.....SN) s 

This holds for i # j .  For i = j the calculation has to be done more carefully, since it 
involves products of operators that are noncommuting, as they act on the same site. 

6.2. Two-dimensional magnets 

In the case of CsNiF, the comparison between results obtained by the PQSCHA and 
experimental and numerical simulation data leads to a very good agreement, as shown in 
figure 11 and figure 12; reasons for such a success have to be recognized in the peculiar way 
the PQSCHA allows us to take into account the nonlinear features of the model, meanwhile 
providing an exact description of the linear behaviour. This application gives us confidence 
to apply the method also in the two-dimensional case. 

Nonlinear excitations, in fact, play a fundamental role also in two-dimensional magnets, 
and, in particular, in those systems whose planar character sustains the appearance of 
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Figure 11. Excess specific heat p" site 6c e c(H) - c(0) of the quasi-one-dimensional S = 1 
compound CsNiF, against tempwature. at field H = SSkC. Solid line: quantum EPFC; 
diamonds: experimental d a a  from 11351. The dotted line refers to Ihe classical covnterpan 
cf the Hamiltonian (6.1) taking? naive mapping of the spin operators onto vectors of length 
S = S; the dashed line refers to S = S+ 112. and represents the meaningful classical limit given 
by the FQSCHA lhrough Weyl ordering. The quantum planar approximted model (dash-doued 
line) appears insufficient for a quantitative description. 
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Figure 12. Combined components F,(k). Fy(k) and F,(k) of the static structure factor of 
CsNiF,. at field H = IOkG and temperature T = 12K. Solid line: quantum EPFC; circles: 
experimena data from [136]. Ovenll intensity scale determined by least-squares method. 

vortices. The adjective plamr refers to the appearance of an exchange anisotropy term that 
defines an easy plane for the spins, making energetically unfavourable their alignment along 
the direction perpendicular to that plane, as in  the typical XXZ Hamiltonian 

(6.11) 

where symbols have the same meaning as in the previous section and the index i 5 (il, iz) 
runs over the sites of a two-dimensional Bravais lattice, d = (dl ,d2) being the displacements 
of the z nearest neighbours of each site. 

The class of models described by (6.11) with 0 < h e 1 has been recently studied 
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in relation to the Berezinskii-Kosterlitz-Thouless (BKT) transition. This in fact has been 
characterized for the classical XY model, i.e. the one in which the spins do not have z 
components at all. Note that this is an intrinsically classical model as in the quantum case 
out-of-plane fluctuations have to be considered, no matter what their explicit appearance in 
the Hamiltonian, Sf = 0 being a physically meaningless constraint, basically because of the 
uncertainty principle. 

The BKT transition is driven by the dissociation of vortedantivortex pairs in the xy 
plane, a process that can be heavily affected by the possibility for the z components to 
be different from zero, demonstrated by the difficulties in deriving a clear picture of the 
quantum version of the subject. A good description of nonlinear excitations (vortices) and 
of quantum (out-of-plane) fluctuations is indeed the essential ingredient for such a picture to 
be drawn, and this indicates the PQSCHA as an ideal tool to further investigate the question. 

The derivation of the effective Hamiltonian corresponding to equation (6.1 1) proceeds 
as in the one-dimensional case, leading to the explicit form 

We see again that quantum effects renormalize the interaction parameters through j + jEe 
and X + Xes, where 

(6.13) 

(6.14) 

and the coefficients DI and D,,, as well as the additive term G(t) ,  have a form analogous 
to the one shown in the previous subsection. 

The quantum fluctuations are responsible for a weakening of the easy-plane anisotropy 
(hcfi c A) and this could be a key point to understand the possible quantum version of the 
BKT transition. Let us then look at spin correlations on the easy plane: they turn out to be 

z - I ,  e z '1 jefi(t,  S,A) = (I  - 1 ~ 1 )  
~ ~ ( t ,  S. A) = A  (1 - $ D ~ ) - '  eT"il 

I 

(6.15) 

Since D F )  is bounded, the asymptotic behaviour of the correlations in the Innsition region 
is just the same as that of the effective classical model, so that the critical behaviour of the 
latter is preserved. It follows that the BKT temperature tc(S, A) of the quantum system is 
connected with its classical counterpart tF1)(A) by the self-consistent relation 

(6.16) 

Although the self-consistency of equation (6.16) is quite involute, due to the slight 
dependence of the classical critical temperature on I, for I = 0 we can easily determine the 
renormalized critical temperature; a graphical solution is shown in figure 13 where we have 
plotted, as functions of the reduced temperature t ,  the curve je&, S, 0). for different values 
of the spin, and the line tit,'"), obtaining t,(S, 0) as the abscissae of the intersection points. 
The qualitative conclusion is that quantum effects lower the critical temperature and that this 
effect is stronger for smaller spins. From the quantitative point of view, since the transfer 
matrix method only applies to the onedimensional case, the classical thermodynamic 
averages are to be calculated by numerical simulation [137], typically a Monte Carlo one. 
Nevertheless, the PQSCHA permits us to avoid much more complicated and computer time 
consuming quantum MC simulations: these become practically unaffordable for S > 1 ,  and 
in this case the approach by PQSCHA seems to be the only available one, making it an 
extremely interesting topic where much work can still be developed. 
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Figure 13. The effective exchange Coupling j d t .  S. A = 0) aminst tempemture, for different 
values of S (solid lines). The energy unit is E = J? = J ( S  t i)2. The slope of lhe dotted 
line is the iwerse of the classical BKT critical temperalure from 11371. The abscissae of the 
intersection points give the expcted quantum BKT transition lemperatures. 

The classical transition temperature for A = 0 is found to be 11371 t:') = 0.70&0.01, 
OUT solution for its quantum counterpart is tc(f, 0) Y 0.35. and in the extreme case of S = 

in fair agreement with the quantum Monte Carlo result 11381 (0.353 i: 0.003). 

7. Dynamics with the PQSCHA 

7.1. Approaches ro dynamics 

Dynamic correlations play an important role in condensed matter physics. In general, we 
are interested in time dependent correlation functions like 

(8,(r) 82) =TI (e-pwe-i'r8, e'"82). (7.1) 

Without loss of generality we assume 181) = (82) = 0. The time Fourier transform of this 
correlation function is related to the spectral lineshape as probed by many experimental 
techniques like NMR, EPR, neutron scattering, etc. There are many methods to approach 
these functions. For the classical c a e  molecular dynamics (MD) represents one of the 
most powerful numerical methods. In the quantum case the problem is still open when one 
wishes to go beyond perturbative many-body approaches; only recently very important exact 
results have been obtained for some one-dimensional systems [139]. The numerical results 
are confined to the analytic continuation of quantum Monte Carlo data, which is rather 
cumbersome and presents accuracy problems. The effective potential can give new ideas to 
approach the problem. We will treat in detail the method based on the frequency moment 
expansion, while we will give here only an outline of the so called centroid molecular 
dj'namics, recently introduced [86, 88, 891. 

Let us consider here for simplicity the autocorrelation function (&) 6) of a Hermitian 
observable 8 = 8. In this case, it turns out to be more useful to deal with the 
'symmetrized' correlation: 

cg) = 1[(8(r) 8) + (6(-r) a)] (7.2) 
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which is a real and even function of time. Its Fourier transform C(w) is real and even as 
well, in the frequency domain. 

In order to take into account the quantum effects related to the noncommutativity of the 
operators and the detailed balance factor, Kubo 11401 introduced the relaxation function 

dh (6(0) 6( f  + i h l ) )  
0 

whose Fourier transform R(w)  is related to C(o) through the spectral theorem: 
hw phw 

c ( W )  - coth - R ( w ) .  2 2 

(7.3) 

(7.4) 

Mathematically, correct moment expansions have been proposed for both correlation and 
relaxation functions [84, 851. In the following we refer to C(t) and C(w),  even though the 
Mori [83, 84, 1411 approach based on the relaxation function gives a more precise physical 
insight when approximations are requested [ 142, 143, 1441. However, all moments are in 
principle accessible for C(w),  while the zeroth moment of R(w)  cannot be exactly obtained. 
Taking into account that the odd moments are vanishing, let us define 

+m 

P L ~  = [, dw w”C(w) (7.5) 

so that the short-time behaviour of C(r) is: 

The moments turn out to be expressed by equilibrium averages containing an increasing 
number of operators, deriving from multiple commutators with the Hamiltonian. 

= 2i r i~”  [f i , [&, . . . , [f i , 61 ’ .I] 6) (2n commutators). (7.7) 

These quantities can indeed be evaluated by means of the effective Hamiltonian or effective 
potential. However the naive moment expansion is very poorly convergent. It has been 
proved that only the short-time behaviour can be described by means of a reasonable number 
of moments. 

Starting from the knowledge of the frequency moments, a reconstruction of the function 
C ( k , w )  has been devised by Mori and Dupuis [83, 84, 851 by means of the continued 
fraction expansion. It can be proven that the correlation function can be written as 
C(w) = (@,,/r)Re[@&~)], where the function @o of the complex variable z admits the 
following continued fraction representation: 

( 

(7.8) 

In the time domain, h ( t )  is called the nth memory function, and the coefficients 6. are 
related to the frequency moments 1841. The explicit expressions for the first three are 

For a harmonic system 6, vanishes for n > 1 , In general, the continued fraction must be 
truncated at a certain level, because. when the order of moments increases, their numerical 
calculation becomes more and more cumbersome and, at the same time, a higher precision 
is required to maintain the relative error on the S parameters reasonably small. Nevertheless, 
the knowledge of the first 6 parameters allows us to reproduce a correlation function which, 



in contrast with the simple moment expansion (7.6), joins the exact short-time behaviour 
with a well behaved long-time tail. 

In order to calculate the spectral shape for anharmonic systems, we must thus resort 
to a reasonable approximation of the nth memory function [145] for n larger than some 
no, a procedure called termination of the continued fraction. However, the choice of the 
termination is a source of arbitrariness, it being generally related to the unknown long- 
time behaviour of the correlations, which cannot be guessed from the knowledge of the 
first moments. Unless some insight into the behaviour of the dynamic variables of the 
system may be obtained, the reconstruction of the spectral shapes of strongly anharmonic 
systems may thus suffer from poor control on the validity of  the approximations employed 
[146, 1471. 

We suggested [80] obtaining such an insight from the MD data for the classical 
counterpart of the system. Namely, one constructs the classical spectra with the available 
classical moments and the termination of the continued fraction is chosen in such a 
way to reproduce as well as possible the MD reference data. Then one replaces the 
classical moments with the quantum ones keeping the same (classical) termination. This 
approximation is based on the assumption that long times, which are associated with low 
frequencies, are less affected by quantum fluctuations. This is also in the spirit of the 
recurrence method [148], with the classical MD spectra as reference. 

Very recently, a different approach to quantum dynamical correlations was proposed 
[86, 88, 891 starting from equation (2.28). Here we simply describe the general idea: the 
method is largely discussed by the authors. also in their review paper [12]. Firstly, a 
generalization of the equation (2.28) was presented for two operators at different imaginary 
times, within a first-order cumulant approximation. Successively, an analytic continuation 
has been done; in this way the quantum detailed balance factor is recovered. Secondly, 
the observation that equation (2.28) represents an ergodic system whose potential is V& 
leads the authors to construct a ‘centroid molecular dynamics’ of quantities containing the 
quantum Gaussian fluctuations. In this way the ‘centroid‘ q&) (its definition coincides 
with that of average point) evolves by means of a classical-like dynamics, under a force 
obtained by averaging with the Gaussian fluctuations, while the quantity of interest is itself 
fluctuating around qc(t)  with the Gaussian pure quantum recipe. The comparison with the 
evolution equation for the Kubo relaxation function [140] of position operators shows that 
the method reproduces the correct expansion up to t 2  (i.e. the second moment) while the 
long-time behaviour is practically the classical one. Preliminq results have been recently 
published, all referring to systems where either the anharmonicity or the quantum effects 
are very small. It would be interesting to test this approach for many-body systems in the 
region of temperatures where both quantum effects and anharmonicity are relevant. 

7.2. Dynamical response by frequency moments 

The effective potential method has been employed to calculate the first even quantum 
moments for the Lennard-Jones chain [78], the Toda lattice [81] and recently also for 
a model of solid argon [79]; from the knowledge of moments, by using the continued 
fraction representation and applying suitable termination schemes, the spectral shape has 
been reconstructed. For the Lennard-Jones chain and the Toda lattice the correlation function 
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has been considered, where ti@) is the displacement of the the ith atom from its equilibrium 
position. 

As shown in [78, 811, explicit expressions for the even frequency moments of C(k,  o) 
can be obtained in terms of integrals like 

m 

dr U(")(~)U(")(~)~-SO'-BUI~( ' )  (7.11) 

where U(')@) denotes the nth derivative of the nearest-neighbour interaction potential u(r) 
with respect to its argument, and U,&) is its renormalized form as defined in section 4.2. 

In 1781 the moments for the Lennard-Jones chain, up to the fourth one, were computed 
also by PIMC simulation. An example of the comparison between the effective potential 
method and PIMC data is shown in figure 14 for the zone-boundary wave-vector k = r / d ,  
d being the lattice spacing; the agreement is very good, but when dealing with dynamics 
we must remember that even small errors on the moments may give large errors in the 
expansion parameter 6, of the continued fraction, so that the statistical errors of PIMC data 
may produce drastic modifications of the line-shapes. 

Sample spectral shapes at half of the zone boundary for the quantum Lennard-Jones 
chain are shown in figure 15; they were obtained by a four-pole termination [I491 of the 
continued fraction, using for the termination parameter r;' 64@4(z) N constant the 
value obtained from the fitting of molecular dynamics data for the classical system; it is 
worthwhile to observe that at the zone boundary the fitting procedure gives essentially the 
same results which may be found by a second-order Gaussian termination 1150, 1421 using 
only the calculated moments. 

Following the same scheme, work is in progress for approaching the spectral shape of 
Lennard-Jones three-dimensional rare gas solids [79]. 

When the Toda lattice is considered, we have again the big advantage that the integrals 
(7.11) can be computed analytically; this allowed the authors of [Sl] to easily evaluate 
classical moments up to the eighth one, and to check the reliability of termination schemes 
for such a system by looking at the stability of the line-shape when the truncation is shifted 
to higher order. 

The soft-mode behaviour in a onedimensional model ferroelectric has also been recently 
investigated by the effective potential method [55]. 

L 

S. Conclusions and perspectives 

According to a more general point of view, we have presented a tutorial derivation of 
the effective potential and effective Hamiltonian approach to quantum effects in condensed 
matter physics. Several applications in different fields show the power of the method 
whenever the quantum character of the system is substantially related to the quadratic 
part of the Hamiltonian so that quantum fluctuations can be treated separately, in the 
one-loop (Gaussian) approximation. The classical nonlinearity is fully considered since 
Feynman's path integral allows the separation of the fluctuations into their classical and 
pure quantum parts, and the latter only can be independently approximated in the spirit of 
the self-consistent harmonic approximation (SCHA), a procedure that we have called the 
pure quantum SCHA (PQSCHA). 

The main advantages of the PQSCHA are (a) in the unified description of quantum 
thermodynamics in the whole temperature range, since the almost-harmonic low-T 
behaviour and the correct quasi-classical high-T behaviour are simultaneously accounted for, 
and (b) in the simplicity of its implementation in terms of classical-like thermal averages with 
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Figure 14. Moments 110. 112 and 114 for kd = n Venus the reduced temperature f = ksTfc: 
Z = m. The solid line is the classical result, the dashed line the quantum effective 
potential result. while the symbols are the Classical and quantum Monte Carlo data. The quantum 
results refer to g = 0.23, the quantum coupling typical of argon. The classical MC data (filled 
circles) are those obtained for a chain of 40 atoms, while the QMC data are lhe results for a 
chain of 20 atoms (open circles) and 40 atoms (open squares). 110 is measured in units a2,  112 
in units a2Z2 and 114 in units a 2 d .  

an effective potential or Hamiltonian. Therefore, the PQSCHA is particularly powerful in the 
study of quantum properties at intermediate temperatures, especially when the nonlinearity 
yields a peculiar behaviour also in the classical limit, such as for those systems supporting 
nonlinear excitations like solitons or vortices. In the zero-dimensional case (one degree 
of freedom), the method permits us to take into account the change of symmetry of the 
effective potential due to the quantum effects in order to determine a ground state different 
from the classical one, the PQSCHA being at T = 0 equivalent to the SCHA. 

Recently, the approach h?s been improved [I511 for taking into account higher-order 
pure quantum contributions, extending Feynman's variational principle to higher-order terms 
of the cumulant expansion. Nonperturbative effects like quantum tunnelling need to be 
inserted ad hoc. However, we notice that these effects are not relevant for the statistical 
mechanics except at lowest temperatures. 

In the multi-dimensional case, the full self-consistent approach looks formidable and a 
further approximation (LCA) is in general necessary for realistic calculations, even though 
some progress has been recently made [56]. In one space dimension the method shows all 
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E y r e  15. Classical and quantum relaxation function F ( k ,  w )  at kd = 0.Sn and three different 
reduced temperatures t = k S T / 6 .  0 = is the characteristic frequency scale of the 
Lennard-Jones chain. The continuous and dashed lines are the classical and quantum results. 
respectively, as given by a second-order Gaussian termination; the long-pached and dohed lines 
are the classical and quantum four-pole relaration function, respectively, obtained by using the 
value of 74 deduced from the fitting of the classical MD data [SO]. 

of its power: reducing quantum calculations to a classical transfer matrix is very gratifying. 
The comparisons with available exact results have assured its reliability. 

For three-dimensional systems, numerical simulations are always necessary, and some 
authors [127, 1521 have discussed the convenience of the method with respect to the usual 
path integral Monte Carlo (PJMC). The first objection refers to the presence of quantum 
anharmonic effects on the ground state [153, 1521. Indeed, such effects were successfully 
accounted for in a recent paper [56]. The other (more pertinent) objection concerns the 
approximate nature of the effective potential with respect to the (in principle) exact PIMC 
approach. However, we point out that the exact P h l C  results are found in the limit of 
infinite Trotter number: increasing it leads to an increase of the computer time needed 
and of the final numerical uncertainty. Even for small quantum coupling, one often needs 
a high Trotter number just to recover the quantum harmonic oscillator behaviour [67]. 
This shortcoming has stimulated the search for improved high-T approximations of the 
density matrix [154, 155, 156, 661 in order to embody the harmonic behaviour in the high- 
temperature approximation of the density matrix that enters the fundamental PIMC formula. 

A complementary point of view involves the possibility of considering the Matsubara 
decomposition of the path integral, accounting for a finite number of Matsubara frequencies 
[ 157,641; however, the theoretical interest of such approaches is greater than their usefulness 
in numerical simulations, given the need for time consuming Fourier transformation routines 
at any MC step. 
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Figure 16. Extrapolation in the Trotter number P of the PlMC values for kinetic energy K and 
potential energy V for the one-dimensional lattice with Morse interaction, u(x) = (e-r - 
The coupling is g = 3.1 (obtained as in (2.37) from chancteristic interaction parameters for 
helium atoms) and the temperature T = E  - IO K. Closed circles: raw PIMC outcomes: open 
circles: HA corrected data; squares: SCHA correction w proposed in [67]. 

However, the PQSCHA method can also be used to construct a better PIMC action, 
improving the afore-mentioned attempts. A first simple but effective step in this direction 
was the proposal of correcting the raw PIMC outcomes in the spirit of the SCHA [67]: 
in figure 16 the resulting improved extrapolation in the Trotter number is apparent and 
represents an interesting perspective for the numerical simulation of quantum solid state 
systems. Further work is in progress along this line, 
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Appendix A. Thermodynamics of the harmonic oscillator 

The main tools used in this paper are the well known results for the harmonic oscillator 
with frequency 0 ,  i.e. V(G) = mo2G2/2, that we report here for convenience. Its quantum 
density matrix at the equilibrium temperature T = B-] reads 

p”)(q”.q’;o) = ~ ~ e ~ p [ - ~ [ ( q f ‘ + q f ) ’ t a n h  27th sinh 2 f f +(q”-q’)’coth f ] }  (A.l) 

where f = f ( o )  = ph0/2.  The configuration density tums out to be a Gaussian, 

with variance u p  = ore(@) = (h/2nw) coth f(w), and the partition function is 2$’(o) = 
(2sinh f ) - I ,  so that the free energy is Ft)(w) = @-I In(2sinh f). 
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The classical limit is obtained for f (U)  -+ 0, and we have again a Gaussian config- 
uration density, but with (YC = a&) = h/(2mwf(w))  = l / (mpw2),  and the partition 
function and the free energy become 2!'(w) = (2 f)-' and FAh'(@) = p-' In(2f), 
respectively. 

Appendix B. Standard PQSCHA: one degree of freedom 

In equation (2.21) consider the action 
1 Bit 

with VO given by (2.23). Let us consider here the whole density matrix p(q",q') = 
(q"1 e& 14') and the associated reduced density matrix &(q", 4'; cj). We obtain 

sok(u)l = -h 1 du [$@'(U) + Vo(q(u);3)] (B.1) 

(B.2) 

The integral over the variable y comes from the Fourier representation of Dirac's 6 function. 
Now. pl(q", 4'; 4; y) is nothing but the density matrix corresponding to the harmonic 
Hamiltonian 

= - 1 d y  B p ~ ( d ' + q ' ; 9 ; Y ) .  
2H 

j 2  mw2 ") 2 

+ - + - (Q - q +  YZ = w + -  2mw2 2m 2 mm2 
Therefore we can immediately use the (analytic continuation of)  equation (A.1) and, 
transforming for convenience the dummy variable y mw2y we obtain 

I t  dy ,-$amo Y #')(q'' - cj + iy, 4' - + iy; 0) 

x / d y  e x p ( - y [ f y 2 + ( (  +iy)'tanhf + ;(q"-q')zcothf] 1 

where 6 = (q" + q') /2  - q f = g h / 2  and ct = (U(@ is the parameter given by (2.25). 
The corresponding reduced configuration density &(q: q )  = p(q, q ;  cj) takes then the 
form (2.24). 

Appendix C. Standard PQSCHA: many degrees of freedom 

In the definition (3.4) consider the trial action (h = 1) 
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where VO is given by equation (3.6), and introduce the Fourier representation of the delta 
function. The trial reduced density then reads 

Here, PI(@'. 4'; q; y) is the density matrix corresponding to the harmonic Hamiltonian 

GI = L 7.p -TA2$ + w + $(+ - @)TBZ($ - @) + iyT(ij - @) 

@, +) -+ (A-'UT$, AUT+) 

(C.3) 

with parametric dependence on 0, also through U(@) and I?@), and on y, This Hamiltonian 
is put in normal form by the linear canonical transformation 

(C.4) 

where the orthogonal matrix U(@) = {Ukw(q)) diagonalizes the real symmetric matrix 
AB'A as in equation (3.7). Let us also transform y 4 A-'UTy and q -+ AU'ij, so 
that J dy -+ (det A)-' dy and 

Now we rescale the variables yk -+ o:yk and replace the known result (A.1) for the 
harmonic oscillator path integral, so that 

where ck  = (q; + qi) /2 - @k f k  = Bok/?. and 01k is given by equation (3.9). In this 
equation the coordinate transformation (C.4) is to be understood also for the arguments of ,&, 
otherwise two further factors det A would appear, due to the transformation property of the 
path integral under (C.4) and to the definition (3.4) of f? under the analogous transformation 
for q. For q' = q" = q, ,3o(q, q; G) defines a Gaussian distribution in configuration space, 
centred at @. The normalization constant is 

and the second equality defines the effective potential V e ~  as in the first equality of 
equation (3.13). The multidimensional Gaussian average ((. .)) defined by is such that 
( ( ( q k  - &)(qv -I&))) = ( (& fV) )  = 6w a,&) which is indeed equivalent to equations (3.8) 
and (3.9). 

Replacing the result for ,& in equation (3.5) the average of an observable O(+) becomes 
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which coincides with equation (3.12). 

and (3.15) we have 
Let us now derive expression (3.17) for the effective potential. Using equations (3.14) 

Then it is sufficient to use equations (3.10) and (3.16), and eventually to replace into the 
expression (3.13) of the effective potential. 

The Weyl symbol for the PQSCHA density operator 60 follows from definition (3.24) 
in terms of its matrix elements po(q", 4') = Jdq  &(q", 4'; q) as obtained from (C.6): 

(C. 10) 

where Ax(& = U&) coth f k ( i ) / Z  are the quantum square fluctuations of the momenta in 
k-space. Replacing in equation (3.28), the PQSCHA expression (3.29) for the average of a 
general observable is obtained. 

Appendix D. Standard PQSCHA: low-coupling approximation 

In the LCA the renormalization parameters are expanded around the self-consistent minimum 
qo of V ~ ( q ) .  The Gaussian average defined by (3.8) and (3.9) can be correspondingly split, 
after equations (3.18), as (( . . . )) = (( . . . ))o + S(( . . . )), where ({ . . . ))o is calculated with 
the parameters ak = ak(qo) (i.e. Ok = q ( q 0 )  and, of course, U = V(q0)). In order to keep 
control over the expansion of the effective potential we devise two dimensionless formal 
expansion labels 

a - ak - ak[w;(q.) - 41/0:. (D.1) 

Note that 01 - h and E - hT at low temperature. whereas at high temperature 01 - h 2 / T  
and E - h2. Then, the 'quantity' 

SA = w - A = ; C,,[D~.(~) - De,]aq,,aq, - OIE (D.2) 

where A E A(q0). The expansion of the logarithmic term of V&) gives 

With this substitution, the effective potential (3.17) becomes 

which is equation (3.19). Indeed, the neglected terms in (SA)' are of order a 2 ~ * .  
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Appendix E. Nonstandard system: path integral 

In this appendix we show how to get the path integral (5.1) for the density matrix in the 
coordinate representation, p(q". 4'). starting from the result given in equation (1.9) of [ 1051. 
Replacing tl = 0 and it2 = P ,  we have for its Weyl symbol 

Note that the integral over p ( p )  can be extracted from the path integral and performed, 
resulting in the boundary condition ;[q(O)+q(p)] = q. Using equation (3.26) we eventually 
get the path integral (5.1) with the action (5.2). 

Appendix F. Nonstandard PQSCHA 

In this appendix we evaluate the expression for A(.$', q'; 5, ij), namely equation (5.5) with 
the action SO given by (5.2) with 'H replaced by Ho, equation (5.6). We rewrite as 

2Y 

&(q''. 4'; 8. B = (&) 1 d z d u /  W l / "  @ DlqJ 

The auxiliary phasespace integration variables (y, z )  arise from the Fourier representation 
of the delta functions. In this way @, 9) appear in the path integral only as parameters, 
and pl(q". q'; p ,  @; y, z )  is the density matrix corresponding to the quadratic Hamiltonian 
function 

1-11 = w + fSpT A' Sp + Sp' X S q  + 4SqT B2 S q  + zT 6p + yTSq (F.2) 
where (Sp, Sq) = (P - 8, q - 1). Now, using equations (5.7) and (5.9), and the canonical 
transformation (5.8) for all phase-space variables, we find the normal form of 1-11: 

RI = W + [ f SPi  + Uk 6p.k 6% + f (mi + 0;) 8qkz + Zk 6PX + Yk 6qkz] 
X 
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cF.3) 

in terms of the harmonic density matrix (A.1) Now we can replace pI in equation (F.1) and 
do the Gaussian quadratures, eventually getting 

where Lk = coth fk - f;’, fk = ,5’0~/2, & = (q: + &)/2 - 4r. and {k = q1[ - 4;. Using 
equation (3.24) the corresponding Weyl symbol is obtained, 

with, now, (Ilk, Ek) = ( p k  - f?k, qk - &). This is a Gaussian distribution in phase space, 
centred in @, q),  with normalization constant 

giving the identification (5.17) of the effective Hamiltonian Bert, and the PO averages ((. . .)) 
are such that 

Lk WkLk ((6;)) = ( (6k( I lk  + U k h ) ) )  = 0 ( ( ( V k  f Uk6k)*)) 2’ (F.7) 
These equations are equivalent to (5.11). 
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